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The values of the displacements (6.10) presented here agree with the appropriate dis- 
placements obtained by classical theory p], just as it should. Assuming ai3 = az3 = 

= ~3~ == 0, we pointedly neglect the normal stresses oy while determining the displace- 
ments, and in combination with the initial assumptions we accepted above; this forms 
the complex of initial hypotheses of the classical theory. 

Finally, let us mention that the weakened membrane state conditions (5.6) are satis- 

fied in the example discussed (p = 0, q # 0) if, for example aI3 I ai2 < 1, uz3 I ap2 < 1, 

% I azg < i (for m = 1). 
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Questions of constructing tensor elsticity relationships within the accuracy of the Kirch- 
hoff-Love hypotheses are discussed herein. It is clarified that it is impossible to conserve 
simultaneously the static-geometric analogy and to assure application of theorems of 

the theory of elasticity by using not too complex elasticity relationships. In this con- 
nection, two modifications of the elasticity relationships in the linear theory of thin 

elastic shells are proposed. The first modification retains these theorems in the linear 
theory of thin elastic shells. The second modification satisfies the requirements of the 

static-geometric analogy, but violates the reciprocity theorem (in the small). 
Among the possible modifications of the elastic&y relationships used in the linear 

theory of thin elastic she&one of the most simple ones is the modification presented 

by the authors of [l] and @I. Nevertheless, these relationships answer a number of requi- 
rements to be discussed below. At the same time the authors of [3] indicated that these 
relationships are not of tensor character. 

In this paper we consider the cons~ction of tensor elasticity relationship differing 
slightly in the lines of curvature from relationships presented in [l] and @]. 
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1, Let us use the following notation: amnr b,, are tensors of the first and second 
quadratic forms, n is the fundamental determinant and cmn is the auxiliary antisymmet- 

ric tensor whose components are c,,, = 0, cl2 == --czl = a’/z, 

The remaining notation differs from the notation in the monograph [4] only in that 
s ’ 21, - Al,, .H21, - HI,, Hl1, Ras are utilized instead of Sr, SZ, HI, H,, HI, R, respec- 

tively. 

2. The known modification of the elasticity relationships (see fl] and PI) 

possesses a number of advantages: 

a) The elasticity relationships do not contradict the sixth equation of equilibrium ; 
b) The stress resultants and moments are representable as a linear transformation 

of the strain energy components with the symmetric matrix of coefficients (the strain 
energy components are determined by the expressions [4] 

a(i) - - Fi, .(i) -_ Xi, ,(I) = - ,@) = +a, r(i) zzz r - ‘/zo/R.. 1% (i = l,Zi ); 

c) The elastic potential is not negative for any values of the strain components ; 
d) The relationships (2. l), referred to the strain energy components, satisfy the 

conditions of the static-geometric analogy. 
The conditions (a)-(c) permit to transfer the f~damental theorems of the theory of 

elasticity to the theory of shells. Condition (d) can be treated as the condition of appli- 

cability of the complex method given in [5] to this modification of shell theory. 

The static-geometric analogy is that the shell theory equations can be separated into 
two groups, which go into one another when taking account of the relationships [4] 

1 :‘, 
{ 6, B, R} e f-a, -D', -B’), BI=m, D’ = 2Eh3 

9, The authors of [3] have shown that the eiasticity relationships of Cl f and @J are 
not of tensor character. It is hence natural to pose the question of altering these rela- 

tionships so that they would remain sufficiently simple when given tensor form (this is 

understood to be the requirement that the dependence on the curvature tensor be linear). 

Moreover, compliance with conditions (a)-(d) in Sect. 2 must be conserved. 
Let us introduce the first and second strain tensors E,, and pL,n [6]. If it is agreed 

to understand [&kJ to be the physical components of the tensor dik at the lines of CUI- 

vature, then em,, and Prnn will be understood to be the tensors for which 

[Q] = ei, [cij] = 1/2(oj [pii] = xii [pij] = T - ‘/zw/Rjj, i i j = 1>2. 

kt us also introduce the tensor of the tangential forces Pfi and the moment tensor 
Mm* by considering them to satisfy the requirements 

vii] 5; Ti, ITi’] = Sij, [iVii] = Gi, [ it1*q = E&j* i + j = I,2 

The formulas connecting the moment and tangential force tensors with the first and 
second strain tensors can be written in the general case as 
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at 

T 
mn =_ BEmnzfl~ap f DFmnQppap, Mmn = DBmnappap + DRmnafiea8 

tit us consider the tensors E and G to be selected so that 

EmnaP = G’“naa = ama@ + d$acrna (3.1) 

Moreover, if we set F = H = 0, then tensor elasticity relationships are obtained which 

the lines of curvature have the form 

T, = B (“i t- a&j), Sij = ‘/zB (1 - 6) o 

Gi = - D (“i + a”j)~ Hij = D (1. - U) (Z - ‘IzOlRjj) i c j = 1.2 

To the accuracy of terms in l/ao/Rij, which are needed to give the elasticity relation- 
ships tensor form, this is the simplest modification of the Love elasticity relationship . 
It does not satisfy the requirements of Sect.2. 

Retaining the formulas (3.1) for E and G , let us seek such F and H for which the 
requirements in Sect. 2 would be satisfied. at least partially. by assuming that these ten- 

sors are comprised of the tensors a, b and c , and are linear in 6. 

4, It can be shown that in tensor notation it is impossible to satisfy simultaneously 
the symmetry condition of the matrix of coefficients in the elasticity relationships and 
the requirement of the static-geometric analogy. This means that no tensor analog of 
the relationships presented in [l] and @] exist. 

If the requirement to retain the stat&geometric analogy is discarded, then elasticity 
relationships satisfying all the remaining requirements exist, and can be taken in the 
form 

T mn = B (Pan@ j- 5cP2@) EaQ - D (1- 6) ~~=~~~~~=~ 

.wmn = D (amaanp + mnacmg) pap - D (I- 6) bPnaameaq 

At the lines of curvature they are (4.2) 

T, = B (E. : + sej) + D (1 - CJ) 4, Sij = (1 - ci) B 
ii 

Gi = -D [xi -f- bxj + Q(t - a) ei/Rii)lf Hla = H21 = D (1 - a) T (i + j = 12) 

Terms missing from the relationships presented in [l] and [2] are placed in braces. 
It is easy to verify the nonnegativity of the elastic potential for (4.1) 

2W = Tmnemn + ~m’~~j~~ = B (El2 -t ez2 i_ v? + v2.2 -125 (ela2 + ~1~2) + 

= B {[l,h2 $ l/a2 + I?wes] 3_ [1/~v12 + 1/~v? + 2%w2] + 
23h 

El3 f-. --!jy- Vi’+ 1/3 K,l 
~. - 1 1 2;L -, 

VlFl + 
1 i 
_ 2 E22 $ --g- v22 + v’s fi22 V2E2 

! 
l- 

-+- (1 - 5) [l/2 (1 - ‘/d12/R11!?22) c.02 + 2,%2tZ]} > 0 

(vi = x;h / Jf33 i = 1, 2) 

since the terms included in each pair of square brackets are nonnegative under the con- 
dition o < ‘jr,. 

6. Conversely, the static-geometric analogy can be retained and the symmetry of 
the matrix of coefficients in the elasticity relationships violated. In this case the reci- 
procity theorem is violated, and this can be justified by the fact that conservation of the 
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static-geometric analogy opens the way to application of the complex method. 
Then the elasticity relationships satisfying all the remaining requirements, including 

the condition of nonnegativity of the elastic potential for LT < 112, can be taken in the 

form T”“?l = B @?‘Q’@ 4 &+.Q) ELfi + I) (2 _ 6) (,?J SQlqvp aB 

P 
mn = L)’ (a”“nnli, - scma:.n”) i~,p + u’ (1 + 0) bnQa”‘PT 

x9 

At the lines of curvature the following elasticity relationships correspond to them: 

Ti = B (&i ?- UEj) - D (1 - O)K~ / Rij 

xi s -D’ (Ci - GGj) f B’ (1 -t_ U) TiiRii 

These elasticity relationships in a general tensor description are much simpler than 
the relationships of Lur’e, which do not, moreover, satisfy the requirement of linearity 
in the tensor b and the statia-geometric analogy. 

The authors of [3] showed that a shell theory satisfying all the requirements in Sect, 
2 can be formally constructed. But to do this, they bad to replace the stress resultants 

and strains in the shell theory equations by their linear combinations, which detriments 
the physical clearness of the shell theory equations. 

The author is grateful to A. L. Gol’denveizer for continued attention to this research. 
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